Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Estelle ARRICAU
Embedded Machine Learning
Commits
cf3b095b
Commit
cf3b095b
authored
Jan 10, 2022
by
estellearrc
Browse files
RF saved
parent
e1d1af85
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
RF/Python/RF_training.py
View file @
cf3b095b
...
...
@@ -124,8 +124,9 @@ def display_model_performance_metrics(true_labels, predicted_labels, classes=[1,
def
train_RF
(
saveWeighs
=
False
,
saveAlgo
=
False
):
# dataset = r'features.csv'
def
train_RF
(
saveAlgo
=
False
):
count_estimator
=
0
#number of estimators processes in the Random Forest
dataset
=
"build/features.csv"
crop_df
=
pd
.
read_csv
(
dataset
,
header
=
0
)
...
...
@@ -222,27 +223,80 @@ def train_RF(saveWeighs=False, saveAlgo=False):
# print(e.n_outputs_)
report
=
export_text
(
e
)
# print(report)
# help(sklearn.tree._tree.Tree)
# Write in cpp header file CARTTrainedcpp.h
# text = str(model_best)
# with open('/home/estellearrc/Documents/Cours/ENSTA_Bretagne_2020_2022/3A_2021_2022/S5/Embedded_machine_learning/embedded-machine-learning/RF/RFTrained.h', 'w') as f:
# f.write(" # ifndef RFTRAINED_H\n#define RFTRAINED_H\n#include <string>\n#include <numeric>\n#include <fstream>\n#include <map>\n#include \"../Helpers/globals.h\"\n#include <typeinfo>\n")
# f.write(
# "std::string RFModel(std::map < FTYPE, DataVector > &features){" + "DataVector featureVector = features[FTYPE::BINAVG];featureVector.insert(featureVector.end(), features[FTYPE::BINSTDEV].begin(), features[FTYPE::BINSTDEV].end());"+text + "return 0;}\n#endif")
# print("Save algo in embedded-machine-learning/RF/RFTrained.h file!")
file
=
'/home/estellearrc/Documents/Cours/ENSTA_Bretagne_2020_2022/3A_2021_2022/S5/Embedded_machine_learning/embedded-machine-learning/RF/RFTrained.h'
open
(
file
,
'w'
).
close
()
with
open
(
file
,
'a'
)
as
f
:
f
.
write
(
"#ifndef RFTRAINED_H
\n
#define RFTRAINED_H
\n
#include <string>
\n
#include <numeric>
\n
#include <fstream>
\n
#include <map>
\n
#include
\"
../Helpers/globals.h
\"\n
#include <typeinfo>
\n
"
)
f
.
write
(
"const int N_ESTIMATORS = "
+
str
(
model_best
.
n_estimators
)
+
";
\n
const int MAX_DEPTH = "
+
str
(
model_best
.
max_depth
)
+
";
\n
"
)
f
.
write
(
"float RFModel(int num_estimator, std::map < FTYPE, DataVector > &features){
\n
"
)
f
.
write
(
"DataVector featureVector = features[FTYPE::BINAVG];
\n
featureVector.insert(featureVector.end(), features[FTYPE::BINSTDEV].begin(), features[FTYPE::BINSTDEV].end());
\n
"
)
f
.
close
()
for
e
in
model_best
.
estimators_
:
# Write in cpp header file RFTrainedcpp.h
with
open
(
file
,
'a'
)
as
f
:
text
=
""
text
=
str_tree
(
text
,
e
,
model_best
.
n_estimators
,
0
,
1
)
f
.
write
(
"
\n
if(num_estimator == "
+
str
(
count_estimator
)
+
"){
\n
"
+
text
+
"}
\n
"
)
f
.
close
()
count_estimator
+=
1
with
open
(
file
,
'a'
)
as
f
:
f
.
write
(
"return 0;}
\n
#endif"
)
f
.
close
()
print
(
"Save algo in embedded-machine-learning/RF/RFTrained.h file!"
)
return
model_best
,
history_best
def
__str__
(
tree
):
if
tree
.
left
==
tree
.
right
==
None
:
return
"return "
+
str
(
tree
.
label
)
+
" ;"
def
compute_depth
(
tree
,
node
):
"""
Returns the depth of the subtree rooted in node.
"""
def
compute_depth_
(
current_node
,
current_depth
,
children_left
,
children_right
,
depths
):
depths
+=
[
current_depth
]
left
=
children_left
[
current_node
]
right
=
children_right
[
current_node
]
if
left
!=
-
1
and
right
!=
-
1
:
compute_depth_
(
left
,
current_depth
+
1
,
children_left
,
children_right
,
depths
)
compute_depth_
(
right
,
current_depth
+
1
,
children_left
,
children_right
,
depths
)
depths
=
[]
compute_depth_
(
node
,
1
,
tree
.
children_left
,
tree
.
children_right
,
depths
)
return
max
(
depths
)
def
str_tree
(
text
,
decision_tree
,
max_depth
,
node
,
depth
):
tree_
=
decision_tree
.
tree_
class_names
=
decision_tree
.
classes_
value
=
None
if
tree_
.
n_outputs
==
1
:
value
=
tree_
.
value
[
node
][
0
]
else
:
value
=
tree_
.
value
[
node
].
T
[
0
]
class_name
=
np
.
argmax
(
value
)
if
(
tree_
.
n_classes
[
0
]
!=
1
and
tree_
.
n_outputs
==
1
):
class_name
=
class_names
[
class_name
]
if
depth
<=
max_depth
+
1
:
# print("hello")
if
tree_
.
children_right
[
node
]
!=
tree_
.
children_left
[
node
]:
left
=
str_tree
(
text
,
decision_tree
,
max_depth
,
tree_
.
children_left
[
node
],
depth
+
1
)
right
=
str_tree
(
text
,
decision_tree
,
max_depth
,
tree_
.
children_right
[
node
],
depth
+
1
)
secondeLayerIF
=
"if("
+
"featureVector["
+
str
(
tree_
.
feature
[
node
])
+
"]"
+
"<="
+
str
(
tree_
.
threshold
[
node
])
+
\
"){
\n
"
+
str
(
left
)
+
"}
\n
"
secondeLayerELSE
=
"else{
\n
"
+
str
(
right
)
+
"}
\n
"
text
+=
secondeLayerIF
+
secondeLayerELSE
print
(
text
)
else
:
# leaf
text
+=
"return "
+
str
(
class_name
)
+
";
\n
"
else
:
secondeLayerIF
=
"if("
+
"featureVector["
+
str
(
tree
.
feature
)
+
"]"
+
"<="
+
str
(
tree
.
threshold
)
+
\
"){"
+
str
(
tree
.
left
.
__str__
())
+
"}"
secondeLayerELSE
=
"else{"
+
str
(
tree
.
right
.
__str__
())
+
"}"
return
secondeLayerIF
+
secondeLayerELSE
subtree_depth
=
compute_depth
(
tree_
,
node
)
if
subtree_depth
==
1
:
text
+=
"return "
+
str
(
class_name
)
+
";
\n
"
# print(text)
return
text
def
transformArrayToStr
(
array
):
array
=
array
.
T
...
...
@@ -271,4 +325,5 @@ def save_file_as_csv(data, name_folder):
if
__name__
==
"__main__"
:
model
,
history
=
train_RF
(
saveAlgo
=
False
,
saveWeighs
=
True
)
model
,
history
=
train_RF
(
saveAlgo
=
False
)
RF/RFTrained.h
View file @
cf3b095b
This diff is collapsed.
Click to expand it.
RF/main.cpp
View file @
cf3b095b
// HEADER=all_headers.h
// echo "#ifndef __ALL_HEADERS__" > $HEADER
// echo "#define __ALL_HEADERS__" >> $HEADER
// for file in 'dir/*.h'
// do
// echo "#include <$file>" >> $HEADER
// done
// echo "#endif" >> $HEADER
#include "RFTrained.h"
#include "../Extraction/features_extraction.cpp"
#include <string>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment